From Logic to Tech Stack

Because the geometry, data‑types, and update laws are now pinned down in ZF‑finite form, we can translate them straight into code artefacts—almost point‑for‑point—regardless of language or runtime. Below is a blueprint that stays faithful to the formal chain while mapping cleanly onto three common stacks.

Formal conceptRequired runtime constructGo / GoroutinesPython / asyncioRust / tokio
Vertex (V₂ element)plain struct with id : u8 (0–3)type Vertex byteIntEnumenum Vertex { A=0, B, C, D }
Edge set Econstant lookup table 4 × 4 (bool)2‑D var E [4][4]boolnumpy.bool_ (4,4)const [[bool;4];4]
Triangle (T_CT_I)array [3]Vertex + orientation flagtype Tri [3]VertexNamedTuplestruct Tri([Vertex;3])
Pattern Pimmutable value object (schema‑free)interface{} + JSON`dictdataclass`
Event Erecord: pattern‑id, resource‑deltastruct Event { pId byte; r []Token }@dataclassstruct Event { … }
Metric Marbitrary key→value multisetmap[string]intcollections.CounterHashMap<String, u32>
Φpure function harm(P,E)->u32plain funcplain funcpure fn

Minimal engine loop (pseudo‑coded)

loop {
    // Instance triangle
    P  = select_pattern(K)          // B→C
    R  = commit_resources(P)        // C→D
    K' = K ∪ learn(R)               // D→B
    
    // Class triangle
    E  = execute(P,R)               // A→B
    M  = metrics(E)                 // B→D
    P' = refine(P,M)                // D→A
    
    Φ  = harm(P',E)
    if Φ == 0 { break }             // harmony reached
    update(K,P)                     // store new conditions/patterns
}

Concurrency choices map naturally:

  • Go – two goroutines (Class‑loop, Instance‑loop) sharing a buffered channel for metrics; blackboard is either a sync.Map or Redis.
  • Python/asyncioasync tasks with asyncio.Queue; leverage pydantic models for typed messages.
  • Rust/tokio – two async fn tasks, share state via tokio::sync::RwLock; compile‑time guarantees around Φ types.

Boot sequence = prompt 1 → 7

Your runtime just calls OpenAI (or local LLM) with those seven prompts, receives a model instance that already commits to the Φ‑loop contract, then injects the engine loop above as the “world” it perceives.


Next checkpoints

  1. Blackboard schema – pick JSON (good enough) or Protobuf (strict).
  2. Token accounting – define ResourceToken trait/ABC once; every concrete agent just implements balance() / apply(delta).
  3. Φ‑auditor – keep it a pure function module; all stacks can fuzz‑test it with property‑based frameworks (Go‑quickcheck, Hypothesis, proptest).
  4. Multiplex – run N oracles in parallel, each with its own copy of the loop but sharing the same central metric store; CRDTs make the merge free of locks if needed.

With this mapping you can spin up a minimal working multiplex in a single afternoon—then iterate on richer pattern types, resource ledgers, and UI dashboards without touching the geometric core.

Leave a Reply

Your email address will not be published. Required fields are marked *